Carboxyhemoglobin – COHb

Physiological role and pathophysiology, reference intervals and the most likely causes of abnormalities

Carboxyhemoglobin – COHb

Reference interval COHb – examples
What is COHb ?
When should COHb be measured ?
Causes of increased COHb
Interpretation of COHb in cases of delayed measurement
Blood oxygenation during carbon monoxide poisoning

FCOHb is the fraction of total hemoglobin (ctHb) which is present as carboxyhemoglobin (COHb). By convention the fraction is expressed as a percentage (%). Thus [24]:

In the range of 0 – 60 % COHb in arterial (COHb(a)) and venous blood (COHb(v)) is similar, i.e. either venous or arterial blood may be analyzed [49]. In most medical texts FCOHb(a) is referred to as simply COHb, which also is used in the text below.

Reference interval COHb – examples

What is COHb?

Carboxyhemoglobin is the product of CO binding to hemoglobin. CO crosses the alveolar membrane easily and binds to hemoglobin with a higher affinity (∼250 times) than oxygen [50]. Since COHb is incapable of binding oxygen, it is categorized as a dyshemoglobin (see Hb).

The level of COHb in blood is determined by the amount of CO in blood. In healthy persons <2 % of total hemoglobin is present as COHb; this is the result of the small amount of CO produced endogenously during normal catabolism of heme to bilirubin [51] and the CO normally present in inspired air. The oxygen-carrying capacity of blood is reduced by the presence of COHb, and increased COHb is associated with risk of inadequate oxygen delivery and resulting tissue hypoxia.

When should COHb be measured?

The principal clinical utility of this test is in the diagnosis and monitoring of carbon monoxide poisoning [52]. Symptoms associated with carbon monoxide poisoning are indicated in Table II.

Cherry-red coloration of the skin is a well-known and more specific sign of carbon monoxide poisoning due to the color of COHb, but this sign is usually only evident post mortem [52].

Causes of increased COHb

Increased COHb is the result of increased CO in blood. The origins of this increased CO are either exogenous, endogenous or a combination of both; exogenous being more common than endogenous.

Exogenous causes of increased COHb, i.e. intentional or non-intentional carbon monoxide poisoning, can arise in a range of scenarios [52]; the most common include:

  • Exposure to vehicle exhaust fumes
  • Exposure to fumes produced during house fires/bonfires
  • Exposure to fumes from faulty domestic gas heating systems
  • Exposure to fumes from kerosene/paraffin heaters

 

The risk of carbon monoxide poisoning and raised COHb is increased if these exposures occur in a closed or poorly ventilated environment.

COHb levels in cases of carbon monoxide poisoning are in general much higher than those associated with endogenous causes and are typically in the range of 15 – 30 %, but can be as high as 50 – 70 % if the carbon monoxide concentration of inspired air is particularly high [54].

Endogenous causes of increased COHb are confined to those pathological conditions associated with increased heme catabolism [53]. They are:

  • Hemolytic anemias
  • Severe inflammatory disease, critical illness, e.g. sepsis

 

These pathologies may increase COHb levels around 3 – 10 % [53].

Combined exogenous and endogenous cause

Methylene chloride (dichloromethane) toxicity is a rare cause of clinically significant increase in COHb. The increased level arises because methylene chloride metabolism in the liver is associated with increased endogenous production of CO [55]. In this case increased COHb has, uniquely, a combined exogenous and endogenous cause.

Interpretation of COHb in cases of delayed measurement

COHb has a half-life of 3 – 4 hours when room air is inspired; this is reduced to 30 – 90 minutes if 100 % oxygen is inspired [52]. The relatively short half-life of COHb means that measured COHb may provide the false impression of low CO exposure if there is a delay between patient removal from exposure and blood sampling. For example, peak measured COHb of 30 % at the site of exposure could theoretically be reduced to 7 % 6 hours later, if room air is inspired. A similar reduction could occur over a period of only 2 hours if the patient is being administered with 100 % oxygen. It is important when interpreting measured COHb results that this physiological aspect is taken into account. Whilst a raised measured COHb (>10 %) almost invariably indicates carbon monoxide poisoning, a normal measured COHb might not be sufficient to exclude the diagnosis if there has been delay in blood sampling, particularly if oxygen has been administered.

Blood oxygenation during carbon monoxide poisoning

The most significant effect of carbon monoxide poisoning and the resulting carboxyhemoglobinemia is reduced total oxygen (ctO2) in blood, and consequent tissue hypoxia. Despite this, oxygenation status, as assessed by pulse oximetry (SpO2) and blood gas parameters (pO2 and sO2), remains apparently normal. SpO2 is falsely normal in the context of carbon monoxide poisoning as (most) pulse oximeters are unable to distinguish COHb and O2Hb [57]. pO2 is unaffected by carbon monoxide poisoning.

References

References

  1. Mikkelsen ME, Miltiades AN, Gaieski DF et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and stock. Crit Care Med 2009; 37: 1670-77.
  2. Siggaard-Andersen O, Fogh-Andersen N, Gøthgen IH, Larsen VH. Oxygen status of arterial and mixed venous blood. Crit Care Med 1995; 23, 7: 1284-93.
  3. Wettstein R, Wilkins R. Interpretation of blood gases. In: Clinical assessment in respiratory care, 6th ed. St. Louis: Mosby, 2010.
  4. Burtis CA, Ashwood ER, Bruns DE. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. St. Louis: Saunders Elsevier, 2012.
  5. Klaestrup E, Trydal T, Pederson J. Reference intervals and age and gender dependency for arterial blood gases and electrolytes in adults. Clin Chem Lab Med 2011; 49: 1495-1500.
  6. Higgins C. Why measure blood gases ? A three-part introduction for the novice. Part 1. www.acutecaretesting.org Jan 2012.
  7. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 2009; 10: 598-605.
  8. Higgins C. Causes and clinical significance of increased carboxyhemoglobin. www.acutecaretesting.org Oct 2005.
  9. Higgins C. Methemoglobin. www.acutecaretesting.org Oct 2006.
  10. Siggaard-Andersen O, Ulrich A, Gøthgen IH. Classes of tissue hypoxia. Acta Anaesthesiol Scand 1995; 39,107: 137-42.
  11. Higgins C. Why measure blood gases ? A three-part introduction for the novice. Part 3. www.acutecaretesting.org Apr 2013.
  12. Sola A, Rogido M, Deulofeut R. Oxygen as a neonatal health hazard: call for détente in clinical practice. Acta Paediatrica 2007; 96: 801-12.
  13. White A. The evaluation and management of hypoxemia in the chronic critically ill patient. Clin Chest Med 2001; 22: 123-34.
  14. Walshaw M, Hind C. Chest disease. In: Axford J, Callaghan CO, eds. Medicine. 2nd ed. Oxford UK: Wiley-Blackwell, 2004.
  15. Malley W. Clinical Blood gases: assessment and intervention. 2nd ed. Elsevier Saunders, 2004.
  16. Hennessey I, Japp A. Arterial blood gases made easy. Edinburgh: Churchill-Livingstone, 2007.
  17. Hoffbrand AV, Moss PAH, Pettit JE. Erythropoiesis and general aspects of anaemia. In: Hoffbrand AV, Moss PAH, Pettit JE, eds. Essential haematology. 5th ed. Oxford: Wiley-Blackwell, 2006: 12-28.
  18. Ranney H, Aharma V. Structure and function of haemoglobin. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, Seligsohn U, eds. William’s hematology. 6th ed. New York City: McGraw-Hill Professional, 2000: 345-53.
  19. Higgins C. Hemoglobin and its measurement. www.acutecaretesting.org Jul 2005.
  20. Mclellan SA, Walsh TS. Oxygen delivery and haemoglobin. CEACCP 2004; 4: 123-26.
  21. West B. Respiratory physiology: the essentials. 9th ed. Philadelphia: Lippincott, Williams and Wilkins, 2012: 36-56.
  22. Higgins C. Parameters that reflect the carbon dioxide content of blood. www.acutecaretesting.org Oct 2008.
  23. Bakerman S. ABC’s of interpretive laboratory data. 4th ed. Scottsdale: Interpretive Laboratory Data, 2002.
  24. CLSI. Blood gas and pH analysis and related measurements; Approved Guidelines. CLSI document CA46-A2, 29, 8. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009.
  25. Thomas L. Critical limits of laboratory results for urgent clinician notification. eJIFCC 2003; 14,1: 1-8. http://www.ifcc.org/ifccfiles/docs/140103200303.pdf (Accessed Aug 2013).
  26. Wilson B, Cowan H, Lord J. The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study. BMC Emergency Medicine 2010; 10: 9.
  27. Gøthgen IH, Siggaard-Andersen O, Kokholm G. Variations in the haemoglobin-oxygen dissociation curve in 10079 arterial blood samples. Scand J Clin Lab Invest 1990; 50, Suppl 203: 87-90.
  28. Kokholm G. Simultaneous measurements of blood pH, pCO2, pO2 and concentrations of haemoglobin and its derivates – a multicentre study. Scand J Clin Lab Invest 1990; 50, Suppl 203: 75-86.
  29. Breuer HWM, Groeben H, Breuer J, Worth H. Oxygen saturation calculation procedures: a critical analysis of six equations or the determination of oxygen saturation. Intensive Care Med 1989; 15: 385-89.
  30. Hess D, Elser RC, Agarwal NN. The effects on the pulmonary shunt value of using measured versus calculated hemoglobin oxygen saturation and of correcting for the presence of carboxyhemoglobin and methemoglobin. Respir Care 1984; 29: 1101-05.
  31. Shappell SD. Hemoglobin affinity for oxygen, 2,3-DPG, and cardiovascular disease. Cardiology Digest 1972; 9-15.
  32. Kosanin R, Stein ED. Measured versus calculated oxygen saturation of arterial blood: a clinical study. Bull N Y Acad Med 1978; 54: 951-55.
  33. O’Driscoll BR, Howard LS, Davison AG. BTS guideline for emergency oxygen use in adult patents. Thorax 2008; 63, Suppl VI: 1-68.
  34. Toffaletti J, Zijlstra W. Misconceptions in reporting oxygen saturation. Anesth Analg 2007; 105: S5-S9.
  35. Siggaard-Andersen O, Wimberley PD, Fogh-Andersen N, Gøthgen IH. Measured and derived quantities with modern pH and blood gas equipment: calculation algorithms with 54 equations. Scand J Clin Lab Invest 1988; 48, Suppl 189: 7-15.
  36. Siggaard-Andersen O, Wimberley PD, Fogh-Andersen N, Gøthgen IH. Arterial oxygen status determined with routine pH/blood gas equipment and multi-wavelength hemoximetry: reference values, precision and accuracy. Scand J Clin Lab Invest 1990; 50, Suppl 203: 57-66.
  37. Gutierrez J, Theodorou A. Oxygen delivery and oxygen consumption in pediatric critical care. In: Lucking SE, Maffei FA, Tamburro RF, Thomas NJ, eds. Pediatric critical care study guide: text and review. London: Springer-Verlag, 2012:19-38.
  38. Hameed S, Aird W, Cohn S. Oxygen delivery. Crit Care Med 2003; 31, Suppl 12: S658-S667.
  39. Siggaard-Andersen O, Gøthgen IH, Wimberley PD, Fogh-Andersen N. The oxygen status of the arterial blood revised: relevant oxygen parameters for monitoring the arterial oxygen availability. Scand J Clin Lab Invest 1990; 50, Suppl 203: 17-28.
  40. Burnett R. Minimizing error in the determination of p50. Clin Chem 2002; 48: 567-70.
  41. Banak T. Fetal blood gas values. In: Modak RK, ed. Anesthesiology Keywords Review. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2013: 212.
  42. Hsia C. Respiratory function of hemoglobin. New Eng J Med 1998; 338: 239-46.
  43. Stryer L. Biochemistry. 3th ed. New York: W.H. Freeman and company, 1988: 143-76.
  44. Andersen C. Critical haemoglobin thresholds in premature infants. Arch Dis Child Fetal Neonatal Ed 2001; 84: F146-48.
  45. Rumi E, Passamoniti F, Pagan L et al. Blood p50 evaluation enhances diagnostic definition of isolated erythrocytosis. J Intern Med 2009; 265: 266-74.
  46. Percy M, Butt M, Crotty G et al. Identification of high oxygen affinity hemoglobin variants in the investigation of patients with erythrocytosis. Hematologica 2009; 94: 1321-22.
  47. Steinberg M. Hemoglobins with altered oxygen affinity. In: Greer JP, Foerster J, Rodgers GM, Paraskevas F, eds. Wintrobes Clinical Hematology. 12th ed. Philadelphia: Lippincot Williams and Wilkins, 2009.
  48. Morgan T. The oxyhaemoglobin dissociation curve in critical illness. Critical Care and Resuscitation 1999; 1: 93-100.
  49. Lopez DM, Weingarten-Arams JS, Singer LP, Conway EE Jr. Relationship between arterial, mixed venous and internal jugular carboxyhemoglobin concentrations at low, medium and high concentrations in a piglet model of carbon monoxide toxicity. Crit Care Med 2000; 28: 1998-2001.
  50. Coburn RF, Williams WJ, Foster RE. Effect of erythrocyte destruction on carbon monoxide production in man. J Clin Invest 1964; 43: 1098-103.
  51. Breimer L, Mikhailidis D. Could carbon monoxide and bilirubin be friends as well as foes of the body ? Scand J Clin and Lab Invest 2010; 70: 1-5.
  52. Lippi G, Rastelli G, Meschi T, Borghi L, Cervellin G. Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin Biochem 2012; 45: 1278-85.
  53. Owens E. Endogenous carbon monoxide production in disease. Clin Biochem 2010; 43: 1183-88.
  54. Kao L, Nanagas K. Carbon monoxide poisoning. Emerg Clin N America 2004; 22: 985-1018.
  55. Shusterman D, Quninlan P, Lowengaart R, Cone J. Methylene chloride intoxication in a furniture refinisher. A comparison of exposure estimates utilizing workplace air sampling and carboxyhemoglobin measurements. J Occup Med 1990; 32: 451-54.
  56. Widdop B. Analysis of carbon monoxide. Ann Clin Biochem 2002; 39: 378-91.
  57. Hampson N. Pulse oximetery in severe carbon monoxide poisoning. Chest 1998; 114: 1036-104.
  58. Price DP. Methemoglon inducers. In: Goldfrank’s toxicological emergencies. 9th ed. New York City: McGraw Hill, 2011: 1698-1707.
  59. Kusin S, Tesar J, Hatten B et al. Severe methemoglobinemia and hemolytic anemia from aniline purchased as 2C-E, a recreational drug, on the internet – Oregon, 2011. MMWR Morb Mortal Wkly Rep 2012; 61: 85-88.
  60. Modarai B, Kapadia Y, Kerins et al. Methylene Blue: a treatment for severe methaemoglobinaemia secondary to misuse of amyl nitrite. Emerg Med J 2002; 19: 270-71.
  61. Saxena H, Saxena A. Acute methaemoglobinaemia due to ingestion of nitrobenzene (paint solvent). Indian J Anaesth 2010; 54: 160-62.
  62. Hamirani YS, Franklin W, Grifka RG, Stainback RF. Methemoglobinemia in a young man. Tex Heart Inst J 2008; 35: 76-77.
  63. Percy M, Lappin T. Recessive congenital methaemoglobinaemia: cytochrome b5 reductase deficiency. Br J Haem 2008; 141: 298-308.
  64. Kedar P, Nadkarni A, Phanasgoanker S et al. Congenital methemoglobinemia caused by Hb-MRatnagiri (β-63CAT→TAT, His→Tyr) in an Indian family. Am J Hematol 2005; 79: 168-70.
  65. Choi A, Sarang A. Drug induced methaemoglobinaemia following elective coronary artery bypass grafting. Anaesthesia 2007; 62: 737-40.
  66. Rehman H. Methemoglobinemia. West J Med 2001; 175: 193-96.
  67. Wolak E, Byerly F, Mason T, Cairns B. Methemoglobinemia in critically ill burned patients. Am J Crit Care 2005; 14: 104-08.
  68. Siggaard-Anderesen O. An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 1971; 27: 239-45.
  69. Higgins C. An introduction to acid-base balance in health and disease. www.acutecaretesting.org Jun 2004.
  70. Higgins C. Why measure blood gases ? A three-part introduction for the novice. Part 2. www.acutecaretesting.org Apr 2012.
  71. Kost GJ. Critical limits for urgent clinician notification at US medical centers. JAMA 1990; 263: 704-07.
  72. Morgan TJ. What is p50. www.acutecaretessting.org March 2003.
  73. Kellum J. Determinants of blood pH in health and disease. Critical Care 2000; 4: 6-14.
  74. Cohen R, Woods H. Disturbance of acid-base homeostasis. In: Warrel DA, Cox TM, Firth JD, eds. Oxford Textbook of Medicine. 5th ed. Oxford: Oxford University Press, 2010.
  75. Nageotte MP, Gilstrap LC III. Intrapartum fetal surveillance. In: Creasy RK, Resnik R, Iams JD, Lockwood CJ, Moore T, eds. Creasy & Resnik’s maternal-fetal medicine. Principles and practice. 6th ed. Philadelphia: Saunders, 2009: 397.
  76. Gherman RB, Chauhan S, Ouzounian JG et al. Shoulder dystoria: The unpreventable obstetric emergency with empiric management guidelines. Am J Obstet Gynecol, 2006, 195: 657-72.
  77. Moody J. UK’s National Institute of Clinical Excellence (NICE). Caesarean section clinical guideline. London: RCOG Press, 2004.
  78. Tuffnell D, Haw W, Wilkinson K. How long does a fetal scalp blood sample take. Br J Obstet Gynae 2006; 113: 332-34.
  79. Higgins C. Clinical aspects of pleural fluid pH. www.acutecaretesting.org Oct 2009.
  80. Cousineau J, Anctil S, Carceller A, Gonthier M, Delvin EE. Neonate capillary blood gas reference values. Clin Biochem 2005; 38: 905-07.
  81. Marshall W, Bangert S. Hydrogen ion homeostasis and blood gases. In: Clinical chemistry. 5th ed. London: Mosby Elsevier, 2004.
  82. Siggaard-Andersen O. Textbook on acid-base and oxygen status of the blood. http://www.siggaard-andersen.dk/OsaTextbook.htm (Accessed May 2013).
  83. Gregg A, Weiner C. “Normal” umbilical arterial and venous acid-base and blood gas values. Clinical Obstetrics & Gynecology, 1993, 36: 24-32.
  84. Soldin SJ, Wong EC, Brugnara C et al. Pediatric reference intervals. 7th ed. Washington DC: AACC Press, 2011.
  85. Siggaard-Andersen O. The acid-base status of blood. 4th rev ed. Copenhagen: Munksgaard, 1976.
  86. Kraut J, Madias N. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 2010; 6: 274-85.
  87. Kellum J. Clinical review: Reunification of acid-base physiology. Critical Care 2005; 9: 500-07.
  88. Kofstad J. All about base excess – to BE or not to BE. www.acutecaretesting.org Jul 2003.
  89. Siggaard-Andersen O. The Van Slyke equation. Scand J Clin Lab Invest 1977; 37: 15-20.
  90. Siggaard-Anderesen O. FAQ concerning the acid-base status of the blood. www.acutecaretesting.org Jul 2010.
  91. Kofstad J. Base excess: a historical review – has the calculation of base excess been standardized the last 20 years ? Clin Chim Acta 2001; 307: 193-95.
  92. Morgan T. The Stewart approach – One clinician’s perspective. Clin Biochem Review 2009; 30: 41-54.
  93. Roemer V. The significance of bases excess (BEB) and base excess in the extracellular fluid compartment (BE ecf). www.acutecaretesting.org Jul 2010.
  94. Juern J, Khatri V, Weigelt J. Base excess: a review. J Trauma and Acute Care Surgery 2012; 73: 27-32.
  95. Toffaletti JG. Blood gases and electrolytes. 2nd ed. Washington DC: AACC press, 2009: 1-39.
  96. Verma A, Roach P. Interpretation of arterial blood gases. Australian Prescriber 2010: 124-29.
  97. Higgins C. Clinical aspects of the anion gap. www.acutecaretesting.org Jul 2009.
  98. Wallach JB. Handbook of interpretation of diagnostic tests. 6th ed. United States of America: Library of Congress Cataloging-in-Publication Data, 1996.
  99. Paulson WD, Roberts WL, Lurie AA, Koch DD, Butch AW, Aguanno JJ. Wide variation in serum anion gap measurements by chemistry analyzers. Am J Clin Pathol 1998; 110: 735-42.
  100. Kraut J, Madias N. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol 2007; 2: 162-74.
  101. Brandis K. Acid-base physiology: the anion gap. www.anaesthesiamcq.com/AcidBaseBook (Accessed Dec 2012).
  102. Gabow PA, Kaehny WD, Fennessey PV, Goodman SI, Gross PA, Schrier RW. Diagnostic importance of an increased serum anion gap. N Engl J Med 1980; 303: 854-58.
  103. Gabow PA. Disorders associated with an altered anion gap. Kidney Int 1985; 27: 472-83.
  104. Feldman M, Soni N, Dickson B. Influence of hypoalbuminemia or hyperalbuminemia on the serum anion gap. J Clin Lab Med 2005; 146: 317-20.
  105. Fidkowski C, Helstrom J. Diagnosing metabolic acidosis in the critically ill: bridging the anion gap, Stewart, and base excess methods. Can J Anesth 2009; 56: 247-56.
  106. Engquist A. Fluids/Electrolytes/Nutrition. 1st ed. Copenhagen: Munksgaard, 1985.
  107. Galindo S. Arterial blood gases (ABGs). SOP number CH010, Version 1. 2010; Aug 23. http://www.isu.edu/~galisusa/BloodGasSOP.html (Accessed Jan 2014).
  108. Miles R, Roberts M, Putnam A et al. Comparison of serum and heparinized plasma samples of measurement of chemistry analytes. Clin Chem 2004; 50: 1704-06.
  109. Horn J, Hansten P. Hyperkalemia due to drug interactions. Parmacy Times 2004; January: 66-67.
  110. Firth JD. Disorders of potassium homeostasis. In: Warrel DA, Cox TM, Firth JD, eds. Oxford Textbook of Medicine. 5th ed. Oxford: Oxford University Press, 2010: 3831-45.
  111. Kjeldsen K. Hypokalemia and sudden cardiac death. Exp Clin Cardiol 2010; 15: e96-99.
  112. Zull DN. Disorders of potassium metabolism. Emerg Med Clin North Am 1989, 7, 4: 771-94.
  113. Nyirenda M, Tang J, Padfield P, Seckl J. Hyperkalaemia. BMJ 2009; 339: 1019-24.
  114. Wennecke G. Useful tips to avoid preanalytical errors in blood gas testing: electrolytes. www.acutecaretesting.org Oct 2003.
  115. Narins RG. Maxwell and Kleemann’s clinical disorders of fluid and electrolyte metabolism. 5th ed. New York: McGraw-Hill, 1994.
  116. Evans K, Greenberg A. Hyperkalemia: a review. J Intensive Care Med 2005; 20: 272-90.
  117. Mandal AK. Hypokalemia and hyperkalemia. Med Clin North Am 1997; 81, 3: 611-39.
  118. Van den Bosch A, Van der Klooster J, Zuidgeest D et al. Severe hypokalaemic paralysis and rhabdomyolysis due to ingestion of liquorice. Neth J Med 2005; 63: 146-48.
  119. Stankovic A. Elevated serum potassium values – the role of preanalytic variables. Am J Clin Pathol 2004; 121: S105-11.
  120. Vendeloo M, Aarnoudse A, van Bommel E. Life-threatening hypokalemic paralysis associated with distal renal tubular acidosis. Netherlands J Medicine 2011; 69: 35-38.
  121. El-Sherif N, Turitto G. Electrolyte disorders and arrhythmogenesis. Cardiology Journal 2011; 18: 233-45.
  122. Liamis G, Milliouis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kid Dis 2008; 52:144-49.
  123. Douglas I. Hyponatremia: why it matters, how it presents, how we manage it. Cleve Clin J Med 2006; 73: S4-12.
  124. Palevsky P, Bhagrath R, Greenberg G. Hypernatremia in hospitalized patients. Ann Intern Med 1996; 124: 197-203.
  125. Funk GC, Lindner G, Druml W et al. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Medicine 2010; 36: 304-11.
  126. Lien YH, Shapiro JI. Hyponatremia: Clinical diagnosis and management. Am J Med 2007; 120: 653-58.
  127. Smith D, Mckenna K, Thompson C. Hyponatraemia. Clin Endocrinol 2000; 52: 667-78.
  128. Brown I, Tzulaki I, Candais V, Elliott P. Salt intakes around the world: implications for public health. Int J Epidemiol 2009; 38: 791-813.
  129. Hoorn EJ, Halperin ML, Zietse R. Diagnostics approach to the patient with hyponatremia: traditional versus physiology-based options. Q J Med 2005; 98: 529-40.
  130. Bhattacharjee D, Page S. Hypernatraemia in adults: a clinical review. Acute Medicine 2010; 9: 60-65.
  131. Reddy P, Mooradian A. Diagnosis and management of hyponatremia in hospitalized patients. Int J Clin Pract 2009; 63:1494-1508.
  132. Adrogue H, Madias N. Hypernatremia. New Eng J Med 2000; 342: 1493-99.
  133. Fortgens P, Pillay T. Pseudohyponatremia revisited – a modern-day pitfall. Arch Pathol Lab Med 2011; 135: 516-19.
  134. Higgins C. Pseudohyponatremia. www.acutecaretesting.org Jan 2007.
  135. Tani M, Morimatsu H, Takatsu F et al. The Incidence and prognostic value of hypochloremia in critically ill patients. The Scientific World Journal 2012; 2012: 1-7.
  136. Becket G, Walker S, Rae P, Asby P. Lecture notes: clinical biochemistry. 8th ed. Oxford: Wiley-Blackwell, 2010.
  137. Berend K, Hulsteijn L, Gans R. Chloride: the queen of electrolytes. Eur J Intern Med 2012; 23: 203-11.
  138. Charles J, Heliman R. Metabolic acidosis. Hospital Physician 2005; March: 37-42.
  139. Galla J. Metabolic alkalosis. J Am Soc Nephrol 2000; 11: 369-75.
  140. Hästbacka J, Pettilä V. Prevalence and predictive value of ionized hypocalcemia among critically ill patients. Acta Anaesthesiol Scand 2003; 47: 1264-69.
  141. Lier H, Maegele M. Incidence and significance of reduced ionized calcium in massive transfusion. International Journal of Intensive Care 2012; 77-80.
  142. Ramasamy I. Recent advances in physiological calcium homeostasis. Clin Chem Lab Med 2006; 44: 237-73.
  143. Marshall W, Bangert S, Lapsley M. Calcium phosphate and magnesium. In: Clinical chemistry. 7th ed. London: Mosby Elsevier, 2012.
  144. Higgins C. Ionized calcium. www.acutecaretesting.org Jul 2007.
  145. Ho KM, Leonard AD. Concentration-dependent effect of hypocalcaemia on mortality of patients with critical bleeding requiring massive transfusion: a cohort-study. Anaesth Intensive care 2011; 39: 46-54.
  146. Cooper M, Gittoes N. Diagnosis and management of hypocalcemia. BMJ 2008; 336: 1298-302.
  147. Assadi F. Hypercalcemia – an evidence-based approach to clinical cases. Iranian J Kidney Disease 2009; 3: 71-79.
  148. Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Eng J Med 1994; 331: 1428-36.
  149. Mulligan, M. Hyperglycemic control in the ICU. www.acutecaretesting.org Apr 2010.
  150. Rozance PJ, Hay Jr WW. Describing hypoglycemia – definition or operational threshold. Early Hum Dev 2010; 86: 275-80.
  151. Young JW. Gluconeogenesis in cattle: significance and methodology. J Dairy Sci 1977; 60: 1-15.
  152. Vander AJ, Sherman JH, Luciano DS. Human physiology: the mechanisms of body function. 5th ed. New York: McGraw-Hill Publishing Company, 1990.
  153. Biswajit S. Post prandial plasma glucose level less than the fasting level in otherwise healthy individuals during routine screenings. Indian J Clin Biochem 2006; 21, 2: 67-71.
  154. Van den Berghe G, Wouters P, Weekers F et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345,19: 1359-67.
  155. American Diabetes Association (ADA). Standards of medical care in diabetes. Diabetes Care 2012; 35, Suppl 1: S11-S63.
  156. Fahy BG, Sheehy AM, Coursin DB. Glucose control in the intensive care unit. Crit Care Med 2009; 37: 1769-76.
  157. Van den Berghe G, Wilmer A, Hermans G et al. Intensive insulin therapy in the medical ICU. N Engl J Med 2006; 354: 449-61.
  158. Cryer PE, Axelrod L, Grossman AB et al. Evaluation and management of adult hypoglycemic disorders: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2009; 94,3: 709-28.
  159. Eggert L. Guidelines for management of neonatal hypoglycemia. Intermountain healthcare. Patient and provider publications 801.442.2963 CPM011, 2012; 1-2.
  160. Fernández BA, Pérez IC. Neonatal hypoglycemia – current concepts. In: Rigobelo E, ed. Hypoglycemia – causes and occurrences. InTech, 2011. http://www.intechopen.com/books/hypoglycemia-causes-and-occurrences/neonatalhypoglycemia-current-concepts (Accessed Feb 2013).
  161. Fugelseth D. Neonatal hypoglycemia. Dsskr Nor Laegeforen 2001; 121,14: 1713-16.
  162. Chan SW. Neonatal hypoglycemia. Up to date reviews 2011. http://www.uptodate.com/contents/neonatal-hypoglycemia (Accessed Mar 2013).
  163. Hawdon JM. Glucose and lactate in neonatology (clinical focus). www.acutecaretesting.org Jun 2002.
  164. Halamek LP, Stevenson DK. Neonatal hypoglycemia, part II: pathophysiology and therapy. Clin Pediatr 1998; 37: 11-16.
  165. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: R502-16.
  166. Shirey TL. POC lactate: A marker for diagnosis, prognosis, and guiding therapy in the critically ill. Point of Care 2007; 6: 6192-200.
  167. Mordes JP, Rossini AA. Lactic acidosis. In: Irwin R, Cera FB, Rippe JM, eds. Irwin and Rippe’s intensive care medicine. 4th ed. Philadelphia: Lippincott-Raven, 1999.
  168. Yudkin J, Cohen RD. The contribution of the kidney to the removal of lactic acid load under normal and acidotic conditions in the conscious rat. Clin Sci Mol Med 1975; 48: 121-31.
  169. Higgins C. L-lactate and D-lactate – clinical significance of the difference. www.acutecaretesting.org Oct 2011.
  170. Uribarri J, Oh MS, Carroll HJ. D-lactic acidosis. A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine 1998; 77: 73-82.
  171. Mizock B. Controversies in lactic acidosis: implications in critically ill patients. JAMA 1987; 258: 497-501.
  172. Casaletto J. Differential diagnosis of metabolic acidosis. Emerg Med Clin N Amer 2005; 23: 771-87.
  173. Essex DW, Jun DK, Bradley TP. Lactic acidosis secondary to severe anemia in a patient with paroxysmal nocturnal hemoglobinuria. Am J Hematol 1998; 55: 110-11.
  174. Aberman A, Hew E. Lactic acidosis presenting as acute respiratory failure. Am Rev Respir Dis 1978; 118: 961-63.
  175. Foster M, Goodwin SR, Williams C, Loeffler J. Recurrent life-threatening events and lactic acidosis caused by chronic carbon monoxide poisoning in an infant. Pediatrics 1999; 104: e34-35.
  176. Freidenburg AS, Brandoff DE, Schiffman FJ. Type B lactic acidosis as a severe metabolic complication in lymphoma and leukemia: a case series from a single institution and literature review. Medicine, 2007; 86: 225-32.
  177. John M, Moore CB, James IR et al. Chronic hyperlactatemia in HIV-infected patients taking antiretroviral therapy. AIDS 2001; 15: 717-23.
  178. Bonnet F, Bonarek M, Abridj A et al. Severe lactic acidosis in HIV-infected patients treated by nucleoside reverse-transcriptase analogs: a report of 9 cases. Rev Med Interne 2003; 24: 11-16.
  179. Farrell DF, Clark AF, Scott CR, Wennberg RP. Absence of pyruvate decarboxylase in man: A cause of congenital lactic acidosis. Science 1975; 187: 1082-84.
  180. Rallison ML, Meikle AW, Zigrang WD. Hypoglycemia and lactic acidosis associated with fructose-1,6 diphosphatase deficiency. J Pediatrics 1979; 94: 933-36.
  181. Bianco-Barca O, Gomez-Lado C, Rodrige-Saez E et al. Pyruvate dehydrogenase deficit associated to the C515T mutation in exon 6 of the E1alpha gene. Rev Neurol 2006; 43: 341-45.
  182. Shapiro NI, Howell MD, Talmor D et al. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med 2005; 45: 524-28.
  183. Trzeciak S, Dellinger RP, Chansky ME et al. Serum lactate as a predictor of mortality in patients with infection. Intens Care Med 2007; 33: 970-77.
  184. Jansen TC, van Bommel J, Bakker J. Blood lactate monitoring in critically ill patients: a systematic health technology assessment. Crit Care Med 2009; 37: 2827-39.
  185. Dellinger RP, Levy MM, Rhodes A et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41: 580-637.
  186. American Academy of Paediatrics. Subcommittee of Hyperbilirubinemia. Clinical practice guideline: management of hyperbilirubinemia in newborn infant 35 or more weeks of gestation. Pediatrics 2004; 114: 296-316.
  187. Kliegman RM, Behrman RE, Jenson HB, Stanton BF. Nelson textbook of pediatrics. 18th ed. Philadelphia: Elsevier health science, 2007.
  188. Maisels MJ. Neonatal jaundice. Pediatr Rev 2006; 27: 443-54.
  189. Bancroft JD, Kreamer B, Gourlev GR. Gilbert syndrome accelerates development of neonatal jaundice. J Pediatr 1998; 32,4: 656-60.
  190. Herrine SK. Jaundice. The Merck manuals online medical library for healthcare professionals. 2009. http://www.merckmanuals.com/professional/search.html?qt=jaundice&start=1&context=%2Fprofessional (Accessed May 2013).
  191. Maisels MJ, McDonagh AF. Phototherapy for neonatal jaundice. N Engl Med 2008; 358,9: 920-28.
  192. Maisels MJ, Watchko J. Treatment of jaundice in low birth weight infants. Arch Dis Child fetal neonatal Ed 2003; 88: F459-63.
  193. Myers GL, Miller WG, Coresh J et al. Recommendations for improving serum creatinine measurement: a report from the laboratory working group of the National Kidney Disease Education Program (NKDEP). Clin Chem 2006; 52: 5-18.
  194. US recommendations. National Kidney Disease Education Program (NKDEP).www.nkdep.nih.gov, (Accessed Jan 2013).
  195. Preiss DJ, Godber IM, Lamb EJ, Dalton RN, Gunn IR. The influence of a cooked meat meal on estimated glomerular filtration rate. Ann Clin Biochem 2007; 44: 35-42.
  196. Valtin H. Renal dysfunction: mechanisms involved in fluid and solute imbalance. Boston: Little Brown and Company, 1979.
  197. Miller BF, Winkler AW. The renal excretion of endogenous creatinine in man: comparison with exogenous creatinine and inulin. J Clin Invest, 1938; 17; 31-40.
  198. Higgins C. Creatinine measurement in the radiology department 1. www.acutecaretesting.org Apr 2010.
  199. National Institutes of Health (NIH). http://www.nlm.nih.gov/medlineplus/ency/article/003475.htm (Accessed Jan 2013).
  200. Kellum JA, Aspelin P, Barsoum RS et al. KDIGO. Clinical practice guideline for acute kidney injury. Kidney International Supplements 2012; 2: 19-36.
  201. Bagshaw SM, George C, Bellomo R, ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 2008; 12,2: R47.
  202. Hoste EAJ, Clermont G, Kersten A et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 2006; 10: R73.
  203. Uchino S, Kellum JA, Bellomo R et al. Acute renal failure in critically ill patients: a multinational, multicentre study. JAMA 2005; 17,294: 813-18. 
  204. Pannu N, Nadim MK. An overview of drug-induced acute kidney injury. Crit Care Med 2008; 36: S216-23.
  205. Bentley ML, Corwin HL, Dasta J. Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med 2010; 38: S169-74.
  206. Vanholder R, Massy Z, Argiles A et al. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant 2005; 20: 1048-56.
  207. Levey AS, Eckardt K, Tsukamoto Y et al. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcome (KDIGO). Kidney International 2005; 67: 2089-100.
  208. Levey AS, Coresh J, Bolton K et al. National Kidney Foundation. Clinical practice guidelines for chronic kidney disease evaluation classification and stratification. Am J kidney Dis 2002; 39: S1-266. http://www.kidney.org/professionals/kdoqi/pdf/ckd_evaluation_classification_stratification.pdf
  209. Higgins C. Creatinine measurement in the radiology department 2. www.acutecaretesting.org Oct 2010.
  210. Cronin R. Contrast induced nephropathy: pathogenesis and prevention. Pediatr Nephrol 2010; 25: 191-204.
  211. Schweiger MJ, Chambers CE, Davidson CJ. Prevention of contrast induced neophropathy: Recommendations for high risk patient undergoing cardiovascular procedures. Catheterization and Cardiovascular Interventions 2007; 69: 135-40.
  212. Levey A, Bosch J, Lewis J et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new predictive equation. Modification of Diet in Renal Disease (MDRD) study group. Ann Intern Med 1999; 130: 461-70.
  213. Lamb EJ, Tomson CR, Roderick PJ et al. Estimating kidney function in adults using formulae. Ann Clin Biochem 2005; 42: 321-45.
  214. National Kidney Disease Education Program (NKDEP). http://nkdep.nih.gov/lab-evaluation/gfr-calculators.shtml. (Accessed Jan 2013).
  215. Schwartz GJ, Work DF. Measurement and estimation of GRF in children and adolescents. Clin J Am Soc Nephrol 2009; 4: 1832-43.
  216. National kidney foundation. http://www.kidney.org/professionals/kdoqi/gfr_calculator.cfm (Accessed Feb 2013).
  217. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150,9: 604-12.
  218. Peruzzi WT. Setting the record on shunt. www-acutecaretesting.org 2004.
  219. Wandrup JH. Quantifying pulmonary oxygen transper deficits in critically ill patients, Acta Anaesthesiol Scand 1995; 39: 2744.
  220. Jardins TD, Burton GG. Clinical manifestations and assessment of respiratory disease. 6st edition. Mosby Elsevier 2011.
  221. Newby LK, Jesse RL, Babb JD et al. ACCF 2012 Expert consensus document on practical clinical considerations in the interpretation of troponin elevations. J Am Coll Cardiol 2012; 60: 2427-63.
  222. Christenson R, Azzazy H. Biochemical markers of the acute coronary syndromes. Clin Chem 1998; 44: 1855-64.
  223. Korff S, Katus HA, Giannitsis E. Differential diagnosis of elevated troponins. Heart 2006; 92: 987-93.
  224. Thygesen K, Alpert JS, Jaffe AS et al. Third universal definition of myocardial infarction. Eur Heart J 2012; 33: 2551-67.
  225. Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag 2010; 6: 691-99.
  226. Apple F. A new season for cardiac troponin assays: it’s time to keep a scorecard. Clin Chem 2009; 55: 1303-06.
  227. Hamm C, Bassand JP, Agewall S et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2011; 32: 2999-3054.
  228. Steg PG, James SK, Atar D et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2012; 33: 2569-619.
  229. Kurz K, Schild C, Isfort P, Katus HA, Giannitsis E. Serial and single time-point measurement of cardiac troponin T for prediction of clinical outcomes in patients with acute ST-segment elevation myocardial infarction. Clin Res Cardiol 2009; 98: 94-100.
  230. Bruyninckx R, Aertgeerts B, Bruyninckx P, Buntinx F. Signs and symptoms in diagnosing acute myocardial infarction and acute coronary syndrome: a diagnostic meta-analysis. Br J Gen Pract 2008; 58: 105-11.
  231. Kirchberger I, Heier M, Kuch B, Wende R, Meisinger C. Sex differences in patient-reported symptoms associated with myocardial infarction. Am J Cardiol 2011; 107: 1585-89.
  232. Apple F, Ler R, Murakami M. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin Chem 2012; 58: 1574-81.
  233. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 2010; 56: 254-61.
  234. Saenger A, Beyrau R, Braun S et al. Multicenter analytical evaluation of a high- sensitivity troponin T assay. Clin Chim Acta 2011; 412: 748-54.
  235. Jardine RM, Dalby AJ, Klug EG et al. Consensus statement on the use of high sensitivity cardiac troponins. SAHeart 2012; 9: 210-15.
  236. Agewall S, Giannitsis E, Jernberg T, Katus HA. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J 2011; 32: 404-11.
  237. McClean AS, Huang SJ. Cardiac biomarkers in the intensive care unit. Ann Intensive Care 2012; 2: 1-11.
  238. Clerico A, Fontana M, Zyw L, Passino C, Emdin M. Comparison of the diagnostic accuracy of brain natriuretic peptide (BNP) and the N-terminal part of the propeptide of BNP immunoassays in chronic and acute heart failure: a systematic review. Clin Chem 2007; 53: 813-22.
  239. Yeo KT, Wu AH, Apple FS et al. Multicenter evaluation of the Roche NT-proBNP assay and comparison to the Biosite Triage BNP assay. Clin Chim Acta 2003; 338: 107-15.
  240. Hall C. Essential biochemistry and physiology of (NT-pro) BNP. Eur J Heart Fail 2004; 6: 257-60.
  241. Kuwahara K, Nakao K. Regulation and significance of atrial and brain natriuretic peptides as cardiac homones. Endocr J 2010; 57: 555-65.
  242. La Villa G, Stefani L, Lazzeri C et al. Acute effects of physiological increments of brain natriuretic peptide in humans. Hypertension 1995; 26: 628-33.
  243. Mair J. Biochemistry of B-type natriuretic peptide – where are we now ? Clin Chem Lab Med 2008; 46: 1507-14.
  244. Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res 2006; 69: 318-28.
  245. Kim H-N, Januzzi JL. Natriuretic peptide testing in heart failure. Circulation 2011; 123: 2015-19.
  246. DeFilippi, van Kimmenade RR, Pinto YM. Amino-terminal pro-B-type natriuretic peptide testing in renal disease. Am J Cardiol 2008; 101: 82-88.
  247. Apple FS, Wu HA, Jaffe AS et al. National academy of clinical biochemistry and IFCC committee for standardization of markers of cardiac damage laboratory medicine practice guidelines: Analytical issues for biomarkers of heart failure. Circulation 2007; 116: e95-98.
  248. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002; 40: 976-82.
  249. Galasko GI, Lahiri A, Barnes SC, Collinson P, Senior R. What is the normal range for N-terminal pro-brain natriuretic peptide ? How well does this normal range screen for cardiovascular disease ? Eur Heart J 2005; 26: 2269-76.
  250. Nir A, Lindinger A, Rauh M et al. NT-pro-B-type natriuretic peptide in infants and children: reference values based on combined data from four studies. Pediatr Cardiol 2009; 30: 3-8.
  251. McMurray J, Adamopoulus S, Anker S et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2012; 33: 1787-847.
  252. National Clinical Guideline Centre. Chronic heart failure: the management of chronic heart failure in adults in primary and secondary care. NICE CG108 2010. London: National Clinical Guideline Centre. Available from: http://guidance.nice.org.uk/CG108/Guidance/pdf/English
  253. Cowie MR, Collinson PO, Dargie H et al. Recommendations on the clinical use of B-type natriuretic peptide testing (BNP or NTproBNP) in the UK and Ireland. Br J Cardiol 2010; 17: 76-80.
  254. Mozid AM, Papadopoulou SA, Skippen A, Khokhar AA. Audit of the NT-ProBNP guided transthoracic echogardiogram service in Southend. Br J Cardiol 2011; 18: 189-92.
  255. Zkynthinos E, Kiropoulos T, Gourgoulianis K, Filippatos G. Diagnostic and prognostic impact of brain natriuretic peptide in cardiac and non-cardiac diseases. Heart Lung 2008; 37: 275-85.
  256. Freitag MH, Larson MG, Levy D et al. Plasma brain natriuretic peptide levels and blood pressure tracking in the Framingham heart study. Hypertension 2003; 41: 978-83.
  257. Morrow DA, de Lemos JA, Sabatine MS et al. Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriurectic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 2003; 41: 1264-72.
  258. Asselbergs FW, van den Berg MP, Bakker SJ et al. N-terminal proB-type natriuretic peptide levels predict newly detected atrial fibrillation in a population-based cohort. Neth Heart J 2008; 16: 73-78.
  259. Lega JC, Lacasse Y, Lakhal L, Provencher S. Natriuretic peptides and troponins in pulmonary embolism. Thorax 2009; 64: 869-75.
  260. Bozkanet E, Tozkoparan E, Baysan O, Deniz O, Ciftci F, Yokusoglu M. The significance of elevated brain natriuretic peptide levels in chronic obstructive pulmonary disease. J Int Med Res 2005; 33: 537- 44.
  261. Tagore R, Ling LH, Yang H, Daw H-Y, Chan Y-H, Sethi SK. Natriuretic peptides in chronic kidney disease. CJASN 2008; 3: 1644-61.
  262. Varpula M, Pulkki K, Karlsson S, Roukonen E, Pettilä V, FINNSEPSIS Study Group. Predictive value of N-terminal pro-brain natriuretic peptide in severe sepsis and septic shock. Crit Care Med 2007; 35: 1277-83.
  263. Desai AS, Ribbins-Domingo K, Shilipak MG, Wu AH, Ali S, Whooley MA. Association between anaemia and N-terminal pro B-type natriuretic peptide (NT-proBNP): findings from the heart and soul study. Eur J Heart Fail 2007; 9: 886-91.
  264. Januzzi JL, van Kimmenade R, Lainchbury J et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the international collaborative of NT-proBNP study. Eur Heart J 2006; 27: 330-37.
  265. Maisel A, Mueller C, Adams K et al. State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail 2008; 10: 824-39.
  266. Maisel AS, Krishnaswamy P, Nowak RM et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. New Eng J Med 2002; 347: 161-67.
  267. Masson S, Latini R, Anand IS et al. Direct comparison of B-type natriuretic peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomatic heart failure: The valsartan heart failure (Val-HeFT) data. Clin Chem 2006; 52: 1528-38.
  268. Richards AM, Troughton RW. The use of natriuretic peptides to guide and monitor heart failure therapy. Clin Chem 2012; 58: 62-71.
  269. Jourdain P, Jondeau G, Funck F et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP multicenter study. J Am Coll Cardiol 2007; 24: 1733-39.
  270. Januzzi JL, Rehman SU, Mohammed AA et al. Use of amino-terminal pro–B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 2011; 58: 1881-89.
  271. Martinez-Rumayor A, Richards AM, Burnett JC, Januzzi JL. Biology of the natriuretic peptides. Am J Cardiol 2008; 101: 3-8.
  272. Mehra MR, Maisel A. B-type natriuretic peptide in heart failure: diagnostic, prognostic, and therapeutic use. Crit Pathw Cardiol 2005; 4: 10-20.
  273. Gailani D, Renné T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol 2007; 27: 2507-13.
  274. Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts and future prospects. Blood 2009; 113: 2878-87.
  275. Goldhaber SZ, Bounameaux H. Pulmonary embolism and deep vein thrombosis. Lancet 2012; 379: 1835-46.
  276. Galanaud JP, Quenet S, Rivron-Guillot K et al. Comparison of the clinical history of symptomatic isolated distal deep-vein thrombosis vs. proximal deep vein thrombosis in 11086 patients. J Thromb Haemost 2009; 7: 2028-34.
  277. Takach Lapner S, Kearon C. Diagnosis and management of pulmonary embolism. BMJ 2013; 346: f757.
  278. Chopra N, Doddamreddy P, Grewal H, Kumar PC. An elevated D-dimer value: a burden on our patients and hospitals. Int J Gen Med 2012; 5: 87-92.
  279. National Institute for Health and Clinical Excellence. Venous thromboembolic diseases: the management of venous thromboembolic diseases and the role of thrombophilia testing. NICE CG144 2012. London: National Institute for Health and Care Excellences. Available from: http://guidance.nice.org.uk/cg144
  280. Wells PS, Anderson DR, Rodger M et al. Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis. N Engl J Med 2003; 349: 1227-35.
  281. Wells PS, Anderson DR, Rodger M et al. Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer. Ann Intern Med 2001; 135: 98-107.
  282. Cosmi B, Legnani C, Tosetto A et al. Usefulness of repeated D-dimer testing after stopping anticoagulation for a first episode of unprovoked venous thromboembolism: the PROLONG II prospective study. Blood 2010; 115: 481-88. 
  283. Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 2009; 145: 24-33.
  284. Shimony A, Filion KB, Mottillo S, Dourian T, Eisenberg MJ. Meta-analysis of usefulness of D-dimer to diagnose acute aortic dissection. Am J Cardiol 2011; 107: 1227-34.
  285. Bauersachs RM. Clinical presentation of deep vein thrombosis and pulmonary embolism. Best Pract Res Clin Haematol 2012; 25: 243-51.
  286. Tripodi A. D-dimer testing in laboratory practice. Clin Chem 2011; 57: 1256-62. 
  287. Raby A. D-dimer assay issues and standardization: QMP-LS studies. Conference: Mayo/NASCOLA coagulation testing quality conference april 17th, 2009. 
  288. Kaptoge S, Di Angelantonio E, Pennells L, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012; 367: 1310-20.
  289. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805–12. Correction in: J Clin Invest. 2003; 112, 2: 299.
  290. Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 2005; 6: 1045-56.
  291. Casas JP, Shah T, Hingorani AD, Danesh J, Pepys MB. C-reactive protein and coronary heart disease: a critical review. J Intern Med 2008; 264: 295-314.
  292. Reeves G. C-reactive protein. Aust Prescr 2007; 30: 74-76.
  293. Kushner I, Rzewnicki D, Samols D. What does minor elevation of C-reactive protein signify ? Am J Med 2006; 119: 166.e17-28.
  294. Allin KH, Nordestgaard BG. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci 2011; 48: 155-70.
  295. Heikkilä K, Ebrahim S, Lawlor DA. A systematic review of the association between circulating concentrations of C reactive protein and cancer. J Epidemiol Community Health 2007; 61: 824-33.
  296. Pepys M. The acute phase response and C-reactive protein. In: Warrell DA, Cox TM, Firth JD, eds. Oxford textbook of medicine.5th ed. Oxford: Oxford University Press, 2010: 1752-59.
  297. McCabe RE, Remington JS. C-reactive protein in patients with bacteremia. J Clin Microbiol 1984; 20: 317-19.
  298. Hofer N, Zacharias E, Müller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology2012; 102: 25-36.
  299. Grønn M, Slørdahl SH, Skrede S, Lie SO. C-reactive protein as an indicator of infection in the immunosuppressed child. Eur J Pediatr 1986; 145: 18-21.
  300. Platt JJ, Ramanathan ML, Crosbie RA et al. C-reactive protein as a predictor of postoperative infective complications after curative resection in patients with colorectal cancer. Ann Surg Oncol 2012; 19: 4168-77.
  301. Hautemanière A, Florentin A, Hunter PR, Bresler L, Hartemann P. Screening for surgical nosocomial infections by crossing databases. J Infect Public Health 2013; 6: 89-97.
  302. Manzano S, Bailey B, Gervaix A, Cousineau J, Delvin E, Girodias JB. Markers for bacterial infection in children with fever without source. Arch Dis Child 2011; 96: 440-46.
  303. Bilavsky E, Yarden-Bilavsky H, Ashkenazi S, Amir J. C-reactive protein as a marker of serious bacterial infections in hospitalized febrile infants. Acta Paediatr 2009; 98: 1776-80.
  304. De Cauwer HG, Eykens L, Hellinckx J, Mortelmans LJ. Differential diagnosis between viral and bacterial meningitis in children. Eur J Emerg Med 2007; 14: 343-47.
  305. McGowan DR, Sims HM, Zia K, Uheba M, Shaikh IA. The value of biochemical markers in predicting a perforation in acute appendicitis. ANZ J Surg 2013; 83: 79-83.
  306. Devran O, Karakurt Z, Adıgüzel N et al. C-reactive protein as a predictor of mortality in patients affected with severe sepsis in intensive care unit. Multidiscip Respir Med 2012; 7: 47.
  307. Nseir W, Farah R, Mograbi J, Makhoul N. Impact of serum C-reactive protein measurements in the first 2 days on the 30-day mortality in hospitalized patients with severe community-acquired pneumonia: a cohort study. J Crit Care 2013; 28: 291-95.
  308. Haran JP, Beaudoin FL, Suner S, Lu S. C-reactive protein as predictor of bacterial infection among patients with an influenza-like illness. Am J Emerg Med 2013; 31: 137-44.
  309. Cals JW, Schot MJ, de Jong SA, Dinant GJ, Hopstaken RM. Point-of-care C-reactive protein testing and antibiotic prescribing for respiratory tract infections: a randomized controlled trial. Ann Fam Med 2010; 8: 124-33.
  310. Póvoa P, Salluh JI. Biomarker-guided antibiotic therapy in adult critically ill patients: a critical review. Ann Intensive Care 2012; 2: 32.
  311. Otterness IG. The value of C-reactive protein measurement in rheumatoid arthritis. Semin Arthritis Rheum 1994; 24: 91-104.
  312. Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys ? Gut 2006; 55: 426-31.
  313. Mazlam MZ, Hodgson HJ. Why measure C reactive protein ? Gut 1994; 35: 5-7.
  314. Leeb BF, Bird HA. A disease activity score for polymyalgia rheumatica. Ann Rheum Dis 2004; 63: 1279-83.
  315. National Collaborating Centre for Women’s and Children’s Health. Antenatal Care: routine care for the healthy pregnant woman. NICE CG62 2008. London: National Institute for Health and Care Excellences. Available from: http://nice.org.uk/CG062
  316. Montagnana M, Trenti T, Aloe R, Cervellin G, Lippi G. Human chorionic gonadotropin in pregnancy diagnostics. Clin Chim Acta 2011; 412: 1515-20.
  317. Cole LA. hCG, the wonder of today’s science. Reprod Biol Endocrinol 2012; 10: 24.
  318. Cole LA, DuToit S, Higgins TN. Total hCG tests. Clin Chim Acta 2011; 412: 2216-22.
  319. Muller CY, Cole LA. The quagmire of hCG and hCG testing in gynecologic oncology. Gynecol Oncol 2009; 112: 663-72.
  320. Stenman UH, Tiitinen A, Alfthan H, Valmu L. The classification, functions and clinical use of different isoforms of HCG. Hum Reprod Update 2006; 12: 769-84. 
  321. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 1999; 340: 1796-99.
  322. Cole LA. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod Biol Endocrinol 2009; 7: 8.
  323. Cole LA. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol 2010; 8: 102.
  324. Burtis CA, Ashwood ER, Bruns DE. Clinical chemistry of pregnancy. In: Burtis CA, Ashwood ER, Bruns DE, eds. Tietz textbook of clinical chemistry and molecular diagnostics. 4th ed. St Louis: Elsevier Saunders, 2006: 2153-206.
  325. Wilcox AJ, Weinberg CR, O’Connor JF et al. Incidence of early loss of pregnancy. N Engl J Med 1988; 319: 189-94.
  326. Barnhart KT, Sammel MD, Rinaudo PF, Zhou L, Hummel AC, Guo W. Symptomatic patients with an early viable intrauterine pregnancy: HCG curves redefined. Obstet Gynecol 2004; 104: 50-55.
  327. Poikkeus P, Hiilesmaa V, Tiitinen A. Serum HCG 12 days after embryo transfer in predicting pregnancy outcome. Hum Reprod 2002; 17: 1901-05.
  328. Deutchman M, Tubay AT, Turok D. First trimester bleeding. Am Fam Physician 2009; 79: 985-94.
  329. Seeber BE. What serial hCG can tell you, and cannot tell you, about an early pregnancy. Fertil Steril 2012; 98: 1074-77.
  330. Barnhart KT. Clinical practice. Ectopic pregnancy. N Engl J Med 2009; 361: 379-87.
  331. Yoo A Zacarro J. Falsely low serum hCG level in a patient with hydatidiform mole caused by the “High-Dose Hook Effect”. Laboratory Medicine 2000; 31: 431-35.
  332. Malin GL et al. Strength of association between umbilical cord pH and perinatal and long term outcomes: systematic review and meta-analysis. BMJ 2010; 340:c1471.
  333. Olsen TG, Barnes AA, King JA. Elevated HCG outside of pregnancy – diagnostic considerations and laboratory evaluation. Obstet Gynecol Surv 2007; 62: 669-74.
Ref.: Acute care testing handbook. Radiometer Medical ApS, 2700 Brønshøj, Denmark, 2014.

Cookies are used on this website

Use of cookies
Confirm your account with Radiometer

Please enter a valid email

CONTINUE
By submitting your e-mail you agree to the data policy notice
Radiometer is using Microsoft Azure Active Directory to authenticate customer access. If you are already registered you will be taken to Microsoft AD to sign in using your Microsoft AD credentials.
You are already registered
Radiometer is using Microsoft Azure AD to authenticate customer access. If you are already registered you will be taken to AZURE to sign in using your AZURE credentials.
Thank you

We will be sending an e-mail invitation to you shortly to sign in using Microsoft Azure AD.

Radiometer is using Microsoft Azure AD to authenticate customer access.
Sorry

It seems that your e-mail is not registered with us

Radiometer is using Microsoft Azure AD to authenticate customer access. If your e-mail is not registered with us please click CONTINUE and we will guide you through the sign-in process.
We have previously sent an invitation by e-mail

Please click "Get started" in the e-mail to complete the registration process

Radiometer is using Microsoft Azure AD to authenticate customer access.
Sorry

We were not able to process your request due to a communication error

Sorry

It seems this account has not been given access to the portal

Radiometer is using Microsoft AZURE Active Directory to authenticate users

Radiometer uses Azure AD to provide our customers and partners secure access to documents, resources, and other services on our customer portal.

If your organization is already using Azure AD you can use the same credentials to access Radiometer's customer portal.

Key benefits

       
  • Allow the use of existing Active Directory credentials
  •    
  • Single-sign on experience
  •    
  • Use same credentials to access future services    

Request access

You will receive an invitation to access our services via e-mail when your request  has been approved.

When you accept the invitation, and your organization is already using AZURE AD, you can use the same credentials to access Radiometer's customer portal. Otherwise, an account will be created for you automatically.

Effective April 18, 2018

This Online Privacy Notice (“Privacy Policy”) explains how we handle the Personal Data provided to us on websites, mobile sites, mobile applications, and other digital services and products controlled by Radiometer Medical ApS, Åkandevej 21, 2700 Brønshøj, Denmark, that link to this Privacy Policy (collectively, “Radiometer Sites”).  Radiometer is the data controller for the processing of Personal Data under applicable law.

This Privacy Notice does not apply to third-party websites to which Radiometer Sites may link.

Types of Information We Collect Online

The types of Personal Data that we may collect while you use the Radiometer Sites are described in this section and include both information that you provide to us and information that we collect automatically when you use the Radiometer Sites.
For purposes of this Privacy Policy, “Personal Data” means information that identifies you or that could reasonably be used to identify you. Examples of Personal Data include name, address, telephone number, and email address.

Information You Provide

You do not have to register for a service or program to receive much of the information available through Radiometer Sites. However, some of our content is available only to registered or identified users and will require you to set up a profile or provide specific information about yourself in order to provide you the service.

Personal Data You Provide When Visiting Radiometer Sites

Radiometer collects Personal Data that you provide on Radiometer Sites, for example, when purchasing a product, to receive marketing products and information, contact Radiometer customer service, or respond to Radiometer questionnaires or surveys. This could include:

  • Contact Information such as your name, address, phone number, or email address
  • Registration Information such as your username and password
  • Remuneration information when you provide a service to Radiometer in your capacity as a healthcare professional
  • Employment, education and other background information when you inquire about employment with Radiometer
  • Payment information (such as banking information, payment card number, expiration date, delivery address, and billing address)
  • Content you may provide (for example, when you complete our Online Contact Form or submit other information).

 

Personal Data You Share During Other Interactions with Radiometer

You may contact Radiometer to ask questions, discuss your concerns, or report issues regarding our products. If you communicate with or request information from Radiometer, you may be prompted to provide your contact information as well as any Personal Data that is relevant to your request.

Information That May Be Collected Automatically

When you use the Radiometer Sites, we also may collect certain usage and device information automatically as described below.

IP Address

We may record the Internet Protocol (“IP”) address of your computer or other electronic device when you visit the Radiometer Sites. An IP address identifies the electronic device you use to access the Sites, which allows us to maintain communication with your computer as you move about Radiometer Sites and to customise content.

Cookies and Other Tracking Technologies

We also collect information about your use of Radiometer Sites through tracking technologies such as cookies and web beacons. A “cookie” is a unique numeric code that is transferred to your computer to track your interests and preferences and to recognise you as a return visitor. A “Web beacon” is a transparent graphic image placed on a Web site, e-mail or advertisement that enables the monitoring of things such as user activity and site traffic. These technologies help remember your preferences and allow us to bring you the content and features that are likely to be of greatest interest to you on the basis of “clickstream” data that shows your previous activities on Radiometer Sites.

We utilise Google Display Advertising (such as Retargeting with Google Analytics, Google Display Network Impression Reporting, DoubleClick Campaign Manager integration, and Google Analytics Demographics and Interest Reporting) to (1) show you our ads on other websites based on your prior visits to Radiometer Sites, and (2) better understand our ad impressions and use of ad services. In connection with the Google Analytics Demographics and Interest Reporting service, we may use data from Google's interest-based advertising or third-party audience data (such as age, gender and interests) with Google Analytics to understand and improve our marketing campaigns and Site content. 

Some of our online advertising takes place through Google Display Advertising. As part of this program, we use Google Analytics features such as Retargeting. In connection with that feature and others offered by ad networks, we and the operators of ad networks, including Google, may use third-party cookies (such as the DoubleClick cookie) – and in some cases first-party cookies (such as the Google Analytics cookie) – to inform, optimise and serve ads across the Internet, based on a user's past visits to Radiometer Sites. We also may show you ads from some of our affiliated companies when you visit Radiometer Sites. 

You can opt out of Google Ads by visiting http://www.google.com/ads/preferences. If you do not want your data used by Google Analytics, you can install the Google Analytics opt-out browser add-on at the Google Analytics opt-out page.

This Radiometer Site is not designed to respond to "do not track" signals received from browsers.

To learn more about cookies and other tracking technologies, including how to disable them, please visit http://www.allaboutcookies.org/. Please note that some cookies are essential to the functioning of our Sites and deleting or disabling them will reduce the site’s functionality.

Mobile Tracking

Some Radiometer Sites are available either as mobile applications or mobile sites that you can use on your mobile device. If you use a mobile device to access and use the Radiometer Sites, we may collect the following mobile-specific information in addition to the other information described above: device or advertising ID, device type, hardware type, media access control (“MAC”) address, international mobile equipment identity (“IMEI”), the version of your mobile operating system, the platform used to access or download the Radiometer Site (e.g., Apple, Google, Amazon, Windows), location information and usage information about your device and your use of the Radiometer Sites.

Information Collected from Other Sources

We may combine information about you from a visit to one Radiometer Site with information about you from visits to other Radiometer Sites. We may also combine information about you that is collected through the Radiometer Sites with information that we have collected offline, as well as with information provided to us by third parties.

How We Use Your Information

We use your Personal Data to provide you the product and services you request, communicate with you, improve your experience on the Radiometer Sites, generally improve our products and services and for other internal business purposes. These uses may also include the recording, organisation, structuring, storage, adaptation or alteration, retrieval, consultation, use, disclosure by transmission, dissemination or otherwise making available, alignment or combination, restriction, erasure or destruction of Personal Data. The Personal Data we collect about you may be stored for five years following the most recent interaction we have had with you, after which point it will be archived only for so long as reasonably necessary for the purposes set out above, in accordance with applicable laws.

Providing Product and Services You Request

If you choose to purchase a product or receive our services, we use the Personal Data that you provide through Radiometer Sites to manage your orders and invoices, to process payments, to respond to your questions, provide you the services you request and offer an optimal customer experience.

Marketing

You may also receive marketing information from Radiometer and related affiliates, such as offers regarding Radiometer related products or services, invitations to participate in surveys about our products, or notifications about special promotions. In such cases, we will use your contact and other Personal Data to send you marketing information.

Customised User Experiences

The Personal Data that you provide may be used to create customised offers, information, or services tailored to your interests and preferences. Also, we may use your IP address and the data that we obtain automatically through the use of cookies or similar tracking technologies to make our Radiometer Sites easier to use and navigate as well as to personalise the content provided on Radiometer Sites by anticipating the information and services that may be of interest to you.

Business and Product Improvement

In order to discover new facts that could help Radiometer better understand customer needs and help improve, develop, and evaluate product, services, materials, and programs. Radiometer analyses the information that you have provided. For these purposes Radiometer does not use information that can directly identify you.

Site Analytics and Improvement

We may use the information that you provide and the information we collect automatically about your use of the Radiometer Sites to monitor user traffic patterns and preferences for site improvement, analytics and optimisation.

Legal Basis for Processing

Under European data protection laws, Radiometer must have a legal basis to process your Personal Data. The legal basis that applies in a particular instance will depend on for which of the specific purposes described above Radiometer is processing your Personal Data:

  • In certain cases, Radiometer may ask for your consent to collect and process your Personal Data. Should you choose to provide your consent, you may later withdraw your consent by contacting us as described in the “Your Privacy Choices” section.  Please note that the withdrawal of consent will not affect processing which has already occurred.
  • In other instances, the processing of your Personal Data may be necessary in order to comply with an applicable law or regulation or for the performance of a contract to which you are subject. You may not be able to opt-out of this processing, or your choice to opt-out may impact our ability to perform a contractual obligation otherwise owed to you.
  • In still other instances, Radiometer may process your Personal Data based on Radiometer’s legitimate interests in communicating with you about our products and services, and about scientific research and educational opportunities.  You have the right to opt-out of all such processing of your Personal Data. You may do so by contacting us as described in the “Your Privacy Choices” section.  

 

Information We Share

We only share your Personal Data with third parties as described below. We do not sell or rent Personal Data to third parties for their own marketing purposes.

Third-Party Advertising and Online Behavioral Advertising

You may be provided with online advertisements of Radiometer products and services on third-party websites and mobile services that are tailored to you, for example, on the basis of information that you provide to Radiometer or a third-party website you are visiting, or of your browsing activity, purchases, or interests. These types of tailored online advertisements may come through several sources, such as the following:

  • We may share with our advertising service providers your non-identifying information that we have obtained from cookies and other tracking technologies on our Radiometer Web sites.
  • Some Radiometer Web sites participate in online behavioral advertising (this is also sometimes called re-target advertising or interest-based advertising). You can identify these sites by the “Advertising Choices” link in the footer. Our advertising network partners may place and use cookies on Radiometer Web sites and on other third-party Web sites to collect information about your activities in order to provide you with online advertisements that are based on your interests. When a Radiometer online behavioral advertisement is delivered to you, you will see an “Ad Choices” icon. Clicking on the icon or link will take you to a Web site where you can manage or opt out of the use of data about your browsing history that is used for the delivery of online behavioral advertisements. If you opt out, you may still see advertisements online, including advertisements from Radiometer that are based on other information (e.g., based on the content of the page being viewed rather than your prior clickstream activity). In some cases, data may still be collected about your browsing activity by these third-party advertisers, but they will not use this data to deliver advertisements that are based on your past online browsing behavior. You can also opt out now by clicking here.
  • Some Web browsers may transmit “do-not-track” signals to Web sites with which the browser communicates. As of the Effective Date of this Privacy Notice, an industry standard has not yet been established on how to respond to these signals. Therefore, Radiometer does not currently respond to these signals. As discussed above, you can opt-out from advertisers that use your browsing history to deliver online behavioral advertisements by visiting adchoices.

 

Affiliates, Vendors and Suppliers

We have relationships with suppliers and affiliated companies, who help us operate our business and for whom it may be necessary to have access to your Personal Data in the course of providing services to Radiometer. We will not authorise these parties to use your Personal Data for any purpose that is not related to Radiometer and its related affiliates business operation, and we do not share Personal Data from countries that require consent, unless appropriate consent has been obtained in advance to sharing with related affiliates. We require them to handle your Personal Data collected in accordance with this Privacy Notice.

Co-branded Sites

We may partner with other companies to provide you with content or services on a joint or “co-branded” basis. At a cobranded site, you will see both the Radiometer logo and the logo of the co-branding partner displayed on your screen. You should read the individual privacy policies of our co-branding partners, as they may differ in some respects from ours. Reading these policies will help you to make an informed decision about whether to provide your information to a given site.

Product Reports

If you contact Radiometer regarding your experience in using one of our products, we may use the information that you provide in submitting reports to the designated government regulatory authority, as required of us by law.

Legal Rights and Obligations

In certain limited circumstances, Radiometer may need to disclose your Personal Data in order to comply with a legal obligation or demand, such as to comply with reporting obligations to our governing regulatory authorities regarding the safety of our products, or in connection with the sale or transfer of one of our product lines or divisions, which includes the services provided through one or more of the Radiometer Sites. In such instances, we will take measures to protect your Personal Data to the extent possible. We also reserve the right to use Personal Data to investigate and prosecute users who violate our rules or who engage in behavior that is illegal or harmful to others or to others’ property.

Change in Organisation

In the event Radiometer decides to reorganise or divest our business through sale, merger, or acquisition, Radiometer may share Personal Data about you with actual or prospective purchasers.  We will require any actual or prospective purchasers to treat this Personal Data in a manner consistent with this notice.

Children Privacy

Radiometer does not knowingly collect or use any Personal Data directly from children on Radiometer Sites (Radiometer defines as “children” as minors younger than 18). We do not knowingly allow children to order our products, to communicate with us, or to use any of our online services. If you are a parent and become aware that your child has provided us with information, please contact us using one of the methods specified below, and we will work with you to address this issue.

Your Privacy Choices

You have the right to see and get a copy of Personal Data about you that we maintain as well as to ask us to make corrections to inaccurate or incomplete Personal Data about you.  

You have the right to receive data you have provided to us in a machine-readable format and to transmit that data to another controller. 
You may also request the erasure of your Personal Data or the restriction of its processing, or object to the processing of Personal Data about you. 
To seek access to Personal Data about you, to file a concern, complaint, or request for correction, or to opt-out of particular programs, please:

  • contact our Legal & Compliance team by clicking on the “Contact Us” link on the Radiometer Site you are using (please add “Privacy” in the headline)
  • contact us by using the Radiometer contact information on the Radiometer mobile application you are using
  • contact us by emailing us at privacy@radiometer.dk.

 

You may also send a letter to the following address:
Radiometer Medical ApS Attn: Legal & Compliance (Privacy)
Åkandevej 21
2700 Brønshøj
Denmark

For more information about your privacy rights, or if you are not able to resolve a problem directly with us and wish to make a compliant, contact your local data protection authority, if applicable.

In all communications to Radiometer, please include your email address, the website address, mobile application, and/or the specific Radiometer product to which you provided Personal Data (e.g., www.radiometer.com), and a detailed explanation of your request. If you would like to delete, amend, or correct your Personal Data and are contacting us by email, please put “Deletion Request” or “Amendment/Correction Request” in the subject line of the email. We will respond to all reasonable requests in a timely manner and may need to further confirm your identity in order to process certain requests.

Data Security

Radiometer maintains reasonable technical, administrative and physical controls to secure any Personal Data collected through the Radiometer Sites. However, there is always some risk that an unauthorised third party could intercept an Internet transmission, or that someone will find a way to thwart our security systems. We urge you to exercise caution when transmitting Personal Data over the Internet, especially your financial-related information. Radiometer cannot guarantee that unauthorised third parties will not gain access to your Personal Data; therefore, when submitting Personal Data to Radiometer Sites, you must weigh both the benefits and the risks.

Third Party Sites and Social Media Plug-ins

This Privacy Notice does not apply to third-party websites to which Radiometer Sites may link. Radiometer Sites may use social media plug-ins (e.g., the Facebook “Like” button, “Share to Twitter” button) to enable you to easily share information with others. When you visit Radiometer Sites, the operator of the social plug-in can place a cookie on your computer or other electronic device that enables that operator to recognise individuals who have previously visited our Site. If you are logged into the social media website (e.g., Facebook, Twitter) while browsing on our Radiometer Site, the social media plug-in allows that social media website to receive information that you have visited our Radiometer Site. The social media plug-in also allows the social media website to share information about your activities on our Radiometer Site with other users of their social media website. These sharing settings are managed by the social media website and governed by its privacy policy.

Accessing Our Sites Globally

This site is owned and operated by Radiometer in Denmark, but the information you provide will be accessible to our affiliates, vendors, and suppliers in other countries in accordance with this policy. Furthermore, if you are visiting this site from a country other than Denmark, your communication with us will necessarily result in the transfer of information across international borders. The level of legal protection for Personal Data is not the same in all countries; however, we will take the security measures described in this Privacy Notice in an effort to keep your information secure. By using this site, you understand that your Personal Data may be stored and processed in the United States and in any country to which we may transfer your information in the course of our business operations.

Notice to California Residents 

Subject to certain limits under California Civil Code § 1798.83, California residents may ask us to provide them with (i) a list of certain categories of Personal Data that we have disclosed to third parties for their direct marketing purposes during the immediately preceding calendar year, and (ii) the identity of those third parties. To make this request, California residents may contact us at privacy@radiometer.dk.

Changes to Our Privacy Policy

We will only use Personal Data in the manner described in this Privacy Policy in effect when the information was collected from you or as authorised by you. However, and subject to any applicable consent requirements, we reserve the right to change the terms of this Privacy Policy at any time. Any changes to this Privacy Policy will be reflected on this page with a new effective date. Radiometer encourages you to review this Privacy Policy regularly for any changes. Any Personal Data collected upon your continued use of Radiometer Sites will be handled in accordance with the currently-posted Privacy Policy.

Privacy and Security

Radiometer Medical ApS (“Radiometer”), along with its affiliates and subsidiaries respect your privacy, value our relationship, and are committed to safeguarding your privacy. We understand the importance of privacy to our customers and visitors to the Radiometer websites. Our use of Personal Data is governed by our Privacy Policy and by accessing and using the Radiometer websites, you agree to be bound by that Privacy Policy.

You recognise and agree that when submitting your personally identifiable information to Radiometer websites, while Radiometer has safeguards in place to prevent unauthorised access or interception, there is no absolute guarantee of security. IN THE UNLIKELY EVENT OF AN INTERCEPTION OR UNAUTHORISED ACCESS DESPITE OUR EFFORTS, RADIOMETER SHALL NOT BE RESPONSIBLE FOR SUCH INTERCEPTIONS OR UNAUTHORISED ACCESS, OR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS) SUFFERED BY A CUSTOMER OR USER, EVEN IF RADIOMETER HAS PREVIOUSLY BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, RADIOMETER DOES NOT WARRANT, EITHER EXPRESSLY OR IMPLIED, THAT THE INFORMATION PROVIDED BY ANY CUSTOMER SHALL BE FREE FROM INTERCEPTION OR UNAUTHORISED ACCESS, AND DOES NOT PROVIDE ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. EACH CUSTOMER IS RESPONSIBLE FOR MAINTAINING THE CONFIDENTIALITY OF HIS OR HER OWN PASSWORD.

 

© 2018 Radiometer Medical ApS. All rights reserved.